• 媒体品牌
    爱范儿
    关注明日产品的数字潮牌
    APPSO
    先进工具,先知先行,AIGC 的灵感指南
    董车会
    造车新时代,明日出行家
    玩物志
    探索城市新生活方式,做你的明日生活指南
  • 知晓云
  • 制糖工厂
    扫描小程序码,了解更多

云里雾里云计算 【15】商机在于为人民服务

2010-04-22 16:29

以大型机(Mainframe)为代表的超大规模计算和存储能力,以前为少数机构专有。旧时王谢堂前燕,飞入寻常百姓家,现在云计算风起云涌,超大规模计算和存储能力,为普通企业甚至个人敞开了大门。问题是,一旦拥有了超大规模计算和存储能力,广大人民群众能做什么?

1.  网络存储。

数码相机现在越来越多,加上手机也能拍照,每日全球新产生的数字照片可谓海量。以前这些照片大都存在个人电脑里,有了网络存储,这些照片的归属越来越倾向于 网络存储。

Flickr,Picasa,以及Facebook等等社交网,都可以提供照片的网络存储。目前主要的问题还是在网络上传的速 度比较慢。长期来讲,终极的解决办法是建设下一代超大带宽的互联网。但是在目前,Flickr,Picasa等等争夺市场的最简单,最有效的办法,看来是开展邮递业务。用户把需要上传的照片刻成光盘,邮递至Flickr和Picasa,它们收到光盘后,批量上传。

类似的机会,还存在于文本 文件,视频,音乐等等。

2.  网站托管。

自己动手建一个网站,事务性的工作要占据很多时间精力,注册域名,购买设备,租用机房等等。后来有人开展网站托管业务,但是网站建设往往必须限定网页设计的模板,后台逻辑处理也不能太复杂。有了云计算平台,网站建设有了更大的灵活性。网站普遍面临的难题,是流量忽上忽下难以预测,云计算平台的高弹性的计算和存储能力,为解决这个难题,提供了可靠的办法。

随着建网站 的进入壁垒降低,云计算平台供应商将面临的竞争,是如何尽快地更多地吸引潜在的客户,把他们的网站建在自己的平台上。譬如,如果想游说秀水街的小摊小贩们去建网站,单靠云计算平台供应商的销售人员挨家挨户上门兜售,恐怕效率太低。有效的办法,或许是采用授权(franchise)的做法。云计算平台与几家 大的经销商谈,说好每招徕一户网站,收入如何分配。然后由经销商去寻找下家客户或者经销商。经销商不仅负责营销,或许还可以负责帮助下家客户设计网站等 等。

3.  高性能计算(HPC)。

提到高性能计算,人们通常会想到天气预报,原子弹爆炸模拟,基因组合搜索等等。对于人们日常生活,目前似乎看不到高性能计算的影子。是日常生活不涉及高性能计算,还是有需求,只不过以前被压抑了?

以我看,需求是有的,只是以前普通人做不到,所以市场潜力没有充分被挖掘出来。譬如说虚拟现实(Virtual Reality)的应用就很广,可以用于游戏,也可以用于教学,例如射击,驾车,飞行,甚至做手术等等。

问题是制作虚拟现实的技术要求很 高,计算量也很大,所以普通人即使有很好的创意,也实现不了。有没有可能把三维计算机图形模型,尽可能多地模板化,元素化。普通人如果有好的创意,可以基于这些模板实现个性化设计,然后把诸多元素组装起来,实现一个一个的场景。

Courtesy http://static.bowenwang.com.cn/gif/virtual-reality-technology-in-olympic-promotion-1.jpg

4.  数据挖掘。

数据挖掘的关键,在于数据的采集。Tim O’Reilly说,“未来属于那些能够实时处理信息的服务,信息的来源既可以是用户,也可以是非人力的传感器(The future belongs to services that respond in real time to information provided either by their users or by nonhuman sensors)”。注意句中提到的传感器,相对于人力产生的信息,传感器上传的数据,更及时,更丰富。

UC Berkeley’s micro sensor mote.
Courtesy http://www.cs.wmich.edu/wsn/images/mote.jpg

问题是传感器能收集什么样的数据?森林防火, 建筑筋梁的应力监测,这些已经有人在尝试。有没有可能实时远程监控,例如监控在家疗养的病人的身体状况,这样既不占用医院的病床,也不耽误及时救治。

非人力产生的数据,不仅来自于传感器,而且很多设备也在无时不刻地产生大量数据,例如无线网络的设备,它们记录了每一部手机从一个基站转换到另一个基站发生的时间。这些数据目前白白地被浪费,如果收集起来,尝试各种数据挖掘算法,或许能够启发出以前想不到的应用。沿用前面的例子,通过对无线网络数据的挖掘, 不仅可以实时测算人口的分布,而且可以估算各个主要道路的交通流量,以及人流车流的速度。

5.  前店后厂。

北京有一家餐 馆,叫“张生记”,它的招牌菜是老鸭汤。但是去张生记品尝老鸭汤,往往乘兴而去,败兴而回。因为餐馆只有8个炖汤的炉头,客人多了供应不过来,只好抱歉地通知顾客,此品告罄。给他们经理出了一个主意,或许可以在郊外租个厨房,专门批量炖制老鸭汤。每天早晨,把炖好的老鸭汤运进餐馆,有食客点此菜,只需回锅加热即可。这个主意,就是前店后厂。后厂完成主要工序,前店只要做简单处理,即可服务客户。

“云而上”一文提到Matlab和 Mathematica两个软件,说对于复杂的计算,不一定要全部在PC本地完成,Matlab和Mathematica可以把一部份运算量庞大的任务, 转发给远程云计算平台去完成,PC本地只负责运算量小的任务,以及结果的显示。这个主意也符合前店后厂的想法。

前面提到的游戏的图像制 作,也是前店后厂的思路。前店负责设计,设计完成后,软件及时给设计者一个简单的二维静态效果图。设计者确认后,让后厂负责完成三维渲染,以及动画控制等等计算量繁重的工作。

前文提及的新浪音乐盒,也是前店后厂的思路,前店主要负责播放,后厂主营搜索及推荐。

当人类普遍拥 有了超大规模的计算和存储能力,软件设计以及算法实现,都可能会发生一系列转变。前店后厂的模式,或许可能成为这一系列转变的第一个尝试。

后厂与云计算挂钩,已经没有太多悬念,困惑在于前店该如何设计。这个专题,留给后文讨论。

登录,参与讨论前请先登录

评论在审核通过后将对所有人可见

正在加载中

移动互联网的围观者、起哄者、以及肇事者。

本篇来自栏目

解锁订阅模式,获得更多专属优质内容